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Estimating the Probability Distribution of von Mises Stress

for Structures Undergoing Random Excitation, Part 1: Derivation

Dan Segalman and Garth Reese

Sandia National Laboratories✝

Organization 9234, MS 0439
PO Box 5800

Albuquerque, NM 87185
Abstract

The primary purpose of finite element stress analysis is
estimate the reliability of engineering designs. In structur
applications, the von Mises stress due to a given load is oft
used as the metric for evaluating design margins. F
deterministic loads, both static and dynamic, the calculation
von Mises stress is straightforward [1]. For random loa
environments typically defined in terms of power spectr
densities, the deterministic theory normally applied to compu
acceleration, displacement, or stress tensor responses cann
applied directly to calculate the probability distribution of von
Mises stress, a nonlinear function of the linear stre
components. The probability distribution of von Mises stress
✝Sandia National Laboratories is a multiprogram laboratory o
the United States Department of Energy under Contract DE
not Gaussian, nor is it centered about zero as are the str
components. Therefore, the form of the von Mises probabili
distribution must be determined and the parameters of th
distribution must be found. In a previous paper [2] the autho
presented a computationally efficient method of estimating t
RMS value of von Mises stress for the case of input force
Gaussian distribution with zero mean. Here we present
procedure for estimating the full probability distribution for suc
cases.

The reliability calculations for a structure of ductile materia
require a linear model for the structure and a statistic
specification of the input forces. In principle, from the linea
l
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Nomenclature

number of frequencies in PSD of force
specification

FFT of imposed load sampled over period

expected value operator

cross-spectral density matrix of imposed loads

modal coordinate of n’th mode

array of all modal coordinates

Fourier transform of  sampled over period

stress vector at location  and time

stress vector at location  associated with mode

von Mises stress at location  and time
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model one can deduce all required transfer functions. Inp
forces are specified by their auto spectral densities with all pha
content missing. In the case of multiple force inputs, the forc
may be specified by a cross spectral density matrix ov
frequency. It is demonstrated here how that information can
used to calculate the probability distributions for the von Mise
stress at different locations on the body. An integral formulatio
is presented for cumulative probabilities and a method f
approximating those integrals is also presented.

A natural alternative to the method presented here wou
involve computing long series of values of von Mises stress a
trying to deduce probability distributions from histograms of tha
data. Indeed this method was used to check and compare res
generated by the core method of this paper. One notes that th
are three serious deficiencies of this alternative, time ser
approach:

• this process is of order  for each output location

This is prohibitively expensive for large models.
• from the numerical data, one has no systematic method o

deducing the asymptotic properties of the distribution. It is
these asymptotic properties that are important in reliabilit
estimation.

• in creating these Fourier components of stress from the
available force data, one would have to postulate (invent)
phase information for the input forces.

Derivation

Where the applied load involves either forces applied
several locations or forces applied at one location but in mo
than one direction, the loads are usually represented by the cr
spectral density matrix:[3,4]

Eq 1

where is the Fourier transform of the vector of forc

components sampled over at period ; denotes the ma

transpose; denotes the complex conjugate; and is
expected value operator (estimates for which are obtained
ensemble averaging.) In the case of a single scalar input for
this reduces to the auto spectral density. The above assumes
the load constitute continuous processes.

The stress at the point in question can be assembled from
contributions of each mode:

Eq 2

where is the nth modal coordinate and is the stre
vector at location associated with that mode. (The stress vec
contains the six non-redundant terms in the stress tensor.)

The square of the von Mises stress can be expressed a
quadratic operator on the stress vector

Eq 3

Nω
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where

Eq 4

It is clear that to obtain the probability distribution of von Mise

stress we must obtain an expression involving the vector

components in terms of what is known about the structu

and the applied loads. This is done as follows.

Because we assume that we have a linear model for the struct
we have the eigen modes, which can be used to map the fo
information into modal force components:[6]

Eq 5

where is the matrix whose columns are the eigen modes of
system. The transfer functions are also known, in particular t
mapping from the Fourier transform of modal forces to th

Fourier transform of the vector of modal coordinates

diagonal matrix [6]:

Eq 6

This is a frequency space expression for modal response in te
of the applied load. We now need to express the structu
response in terms of what is actually known about the appli
loads, and that is statistical in nature. We take an outer expans
of Equation 6 with itself and take the expected value:

Eq 7

The above is mapped from frequency space to time space w

aid of Parsevals theorem[7] to yield the covariance matrix

zero lag:

Eq 8

We use the standard methods to decompose and to map

modal coordinates into uncorrelated variables. Observing th

is symmetric and positive semi-definite, its singular valu

decomposition is [5]

Eq 9
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where is a diagonal matrix whose dimension is the rank

and is a rectangular matrix having the property th

is the identity whose dimension is the rank of S
(Here we have retained only the nonzero terms of the diago
matrix and the corresponding columns of the rotation matrix. F
a symmetric, positive semi-definite matrix eigen analysis a
singular value decomposition are the same.) Defining

, Eq 10

we find that components of are independent, identica
distributed (IID) Gaussian processes, each with un
variance(GUV):

Eq 11

We define another set of random variables by

. Eq 12

A little algebra shows that

Eq 13

from which we conclude that

Eq 14

In our new coordinates, , the square of the von Mises stre
is

Eq 15

where

Eq 16

and . Matrix is square having dimensionality equa

to the rank of but possibly much lower rank. Because th

rank of is five, the rank of can be at most five. Further, th

rank of is also bounded by the rank of , and by th

dimensionality of the stress vectors.

We exploit the symmetry and the positive semi-definiteness

 in doing its singular value decomposition:

Eq 17

where the matrix is diagonal and has dimension equal to t

rank of and is a rectangular matrix having property th

is the identity matrix whose dimension is the rank o

. The von Mises stress is now

Eq 18

This suggests yet another change of variables:
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Eq 19

It is easily shown that the elements of are IID, GUV. Th

advantages of the above transformation are first that it redu

the number of random variables of this problem to the rank of

(at most five) and second that it aligns the random variables
the directions of the axes of the ellipsoids of constant von Mis
stress.

Eq 20

The average value of the square of the von Mises stress is

Eq 21

Noting that , the above becomes

Eq 22

We see that is the contribution of the ‘th random process

and the rank of is the number of independent rando
processes taking place at that location. For convenience, we r

to  as .

We now calculate the probability of the von Mises stress bei

less than some value :

Eq 23

where is the -dimensional ellipsoid containing

points  associated with von Mises stress less than :

Eq 24

and is the rank of . The integral of Equation 23 is difficul
to evaluate.

Quadrature by Boxes

We discuss here how to achieve upper and lower bounds
the integral in Equation 23. This discussion then leads
reasonably good approximations for that integral.

We first note that the integral of over an

dimensional box, , having faces normal to each of th

coordinates , can be calculated analytically:
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Eq 25

where  and  define the boundaries of  and

Eq 26

is the cumulative distribution for a Gaussian distribution[9]. Th

quantity  is the normal probability integral[8].

We next consider volumes and
each of which is a union of N dimensiona

boxes selected so that

Eq 27

The parameter is an indicator of the level of refinement so th

 as .

These contained and containing volumes are illustrated for

problem of two processes ( ) in the figure below.

Expressing each of these volumes in terms of its compon
boxes:

Eq 28

and

Eq 29

The integral is now approximated by:

Eq 30

and by
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k 1=
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α
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Figure 1. A collection of boxes entirely contained in
the ellipsoid, is an admissible VL D{ } Y α, ,( )

VL D{ } Y α, ,( ) BL k, D{ } Y α, ,( )
k
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∪
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Eq 31

Recalling Equation 27 and observing that the integrand

positive, we have upper and lower bounds for :

Eq 32

We also note that

Eq 33

as and that convergence is assessed by the differenc
the upper and lower bound quadrature.

The mathematics discussed above has been implemented
simple recursive C language procedure which is listed in t
Appendix.

Numerical Comparison

Following is a plot of the exact and the approximat
calculations for the case of two independent processes e
contributing equally to von Mises stress ( ). In this
case the probability density is a Rayleigh distribution. This ca

ρr∏ yr( ) yrd
VU D{ } Y α, ,( )

∫ ρr∏ yr( ) yrd

BU k, D{ } Y α, ,( )
k

∪
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k
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E D{ } Y,( )
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PBU k, D{ } Y α, ,( )
k
∑≤

PBL k, D{ } Y α, ,( )
k
∑ PBU k, D{ } Y α, ,( )

k
∑, P p Y<( )→

α ∞→

D1 D2 1= =

Figure 2.   Comparison of exact ( )
cumulative distribution function for
and numerical quadrature. Quadrature generates
upper and lower bounds which almost overly the
analytic curve.
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is one for which a simple closed-form expression can b
achieved for the exact integral.

The numerical quadrature used here employed boxes
the calculation of the lower bound and in the calculation o
the upper bound. The error is shown in the following figure. Th

maximum error in this case was and occurred near t
RMS value of von Mises stress. In the quadrature employed,
magnitude of the upper-bound error was almost exactly t
magnitude of the lower-bound error. Also interesting is th
comparison of the magnitude of the error and the function
the difference between the cumulative probability and 1.0. It
seen that the error stays substantially below , indicatin
that the quadrature remains accurate even out to high value
von Mises stress. In other cases, comparison could be made o
between the upper-bound and lower-bound quadratures.

Summary

The authors have derived and presented an expression for
cumulative probability distribution for the von Mises stres
resulting from random loadings that are Gaussian and of ze
mean. This is an important result for reliability of structure
subject to such loads.

Additionally, a convenient set of expressions were derived f
upper and lower bounds to the cumulative probability.

Finally, it should be noted that the derivation of the cumulativ
probability integral and of the approximations for it could also b
applied to any other quadratic function of the load.
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Appendix: Code Fragment for Recursive Calculation of
Lower-Bound Quadrature

// recursive routine to calculate a lower
//   bound for the integral
double root2 = sqrt(2.0);
double slabL(double *D,     int generation,

double remain, double *xi,
int Inner)

{
double ymax=sqrt(remain)/D[generation];
if(generation==4)

return(erf(ymax/root2));
if(D[generation+1] < D[0]*0.01)

return(erf(ymax/root2));
double sum=0;
double y1, y2;
y1 = 0;
int i;
// in the following, it is assumed that
//xi[Inner] < 1;
for(i=0; i<Inner; i++){

y1 = xi[i]  *ymax;
y2 = xi[i+1]*ymax;
double remain2 = remain-

(y2*D[generation])
*(y2*D[generation]);

sum += (erf(y2/root2) -
erf(y1/root2))*

slabL( D,     generation+1,
            remain2, xi, Inner);
  }
  return(sum);
}
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